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ABSTRACT: A theoretical model for the dependence of the modulus of elasticity, M , on
the porosity, a, of an elastomeric disk subjected to triaxial stress was developed. An
empirical law was proposed for the dependence of the surface energy, G, on the porosity,
a, of the elastomer. The presented theoretical model is a two-degree-of-freedom model,
the parameters of which are determined by fitting with experimental data derived from
the elastomer disks. In order to obtain the final mathematical expression for the effec-
tive modules of the composite system, a relationship between the strain field within the
disk and the porosity was developed. The numerical differentiation of the experimental
stress/strain curve from the tested bonded elastomer disks yields the values of the
apparent modulus of the elastomer disks as a function of the strain field within the
testing specimens. An appropriate combination of the proposed theory and the received
experimental data yields the percentage of the growing microvoids within the deformed
material. q 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1821–1827, 1997

Key words: elastomers; fracture analysis; porosity; apparent modulus; effective Pois-
son ratio

INTRODUCTION The effects of voids on the response of a rubber
pancake sample were examined in a previous ex-

In previous studies, experiments were performed perimental study by myself and coworkers.3 Using
on elastomeric disks subjected to triaxial stress. the linear theory of stress analysis, a theoretical
The so-called acoustic emission technique was ap- estimation of the diametrical contraction of the
plied for the evaluation and analysis of growing rubber pancake disks was obtained. Experimental
and tearing mechanisms of existing microvoids in measurements3 of the lateral contraction at the
the testing disks. It was shown1,2 that the existing middle plane of a pancake sample have shown
microvoids in the deformed disk are responsible that the testing rubber is no longer an incom-
for the reduction of the apparent modulus M , the pressible material. By comparing the experimen-
stress softening, and the hysteresis when the ma- tal data with the proposed theoretical equations,
terial is subjected to triaxial stress conditions. A a value of 0.487 was assigned for the effective
series of experiments conducted in our laboratory Poisson’s ratio of the material. An effective Pois-
confirmed the existence of microvoids within the son’s ratio veff was estimated in Reference 4, which
deformed, bonded, unfilled nitrite rubber disks. is consistent with the measured values of 0.492
Valuable information about the size of the de- from the normalized volumetric contraction exper-
formed voids in the material was obtained using imental data. A simple finite element mesh was
the frequency spectrum of the detected acoustic used in order to obtain analytical expressions re-
emission signals. lating the volumetric contraction and (M /E)tens.

to effective Poisson’s ratio. Taking a typical exper-
q 1997 John Wiley & Sons, Inc. CCC 0021-8995/97/091821-07 imental value of aspect ratio (D /H Å 10), shear
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the critical porosity of fracture. The porosity rate
is composed of two parts, as follows:

a
h
Å a

h n / a
h g (1)

where the ‘‘dot’’ denotes differential on time, a
h n is

the contribution from the nucleation of voids, and
a
h g is the contribution from the growth of existing

voids. Nucleation and growth of voids can be con-
sidered in the failure analysis model. The major
factors to influence microflaw nucleation are
stress, strain, and temperature (see Curran et
al.7) . In this study, the porous material is as-
sumed to be statistically homogeneous and iso-
tropic so that it can be modeled by a homogeneous
isotropic solid material. Along this theoretical
analysis, the matrix is assumed to be incompress-
ible and the spherical geometry is maintained
during the growth of voids. A simplified model ofFigure 1 A diagrammatic representation of a porous,
porous element is assumed by considering a singlerandomly faulted medium.
spherical void of radius A in a sphere of radius B
subjected to external stress P (t) (see Fig. 1).

modulus of the unfilled nitrite rubber (G Å 60
psi) , and the experimental value of volumetric PROBLEM FORMULATIONcontraction (g Å 0.23), it was found that the ef-
fective Poisson’s ratio is veff Å 0.492 and the ini- The geometry and the coordinate system of the
tial modulus of the bonded rubber disks in tension testing elastomer disks used for this analysis are
is Mtens. Å 2,990 psi. Using Warren’s equation,5

shown in Figure 2. The radius and the thickness
which correlates the effective Poisson’s ratio veff

with the volume fraction of growing voids, a, we
found that the a grows from 0.2 to 2.2%.

In this article, the effluence of the porosity of
the material on the apparent modulus, the strain
field, and the stress field of a pancake sample sub-
jected to triaxial stress was examined. Using the
power balance equations, from a fracture mechan-
ics point of view, one is able to extract mathemati-
cal equations for the strain, stress, and apparent
modulus of the testing disks as a function of the
volume fraction of growing flaw mechanisms in-
side the material. The proposed mathematical
model involves two fitting parameters, the values
of which can be determined using the experimen-
tal stress/strain curve received from the testing
bonded elastomer disks.

POROSITY IN ELASTOMERIC MATERIALS

Figure 2 The geometry and the cylindrical coordinate
In this study, a damage variable, a, called the system of the testing pancake. D, diameter of the cylin-
porosity, is defined as a Å Vh /V, where Vh denotes drical specimen; h1, initial thickness of rubber; r,z de-
the volume of voids, and V is the volume of solids note the cylindrical coordinates of the specimen; u,w
plus Vh . Following Jian and Ze-Ping,6 the fracture are the displacement fields in r,z directions, respec-

tively.criterion of the material is a ¢ acrit , where acrit is
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of the sample were denoted by a and h , respec- and G is the shear modulus of the material, which
can be determined from the uniaxial tension datatively. According to linear stress analysis, it can

be shown that the longitudinal displacement w (z) of the material. The apparent modulus, M , is de-
fined as the ratio of the applied stress on theand the transverse displacement u (r , z ) are given

by3,4,8,9 bonded disks divided by the strain within the
disks. In previous studies, it was proved3,4,11 that
the effective Poisson’s ratio veff is due to the pres-u (r , z) Å AI1(r)S1 0 4

z2

h2D (2)
ence of voids within the testing sample and is
given by

and
neff Å

2 0 3a
4 0 3a

(11)
w (z ) Å w (z ) (3)

where where a denotes the volume fraction of voids
within the sample, that is,

r Å 2r
h

√
3 0 6n
2 0 2n

(4)

a Å
4
3pa3

holenhole

pa2h
(12)

the I1(r) and v denote the modified Bessel func-
tion of first order10 and Poisson ratio, respectively,

where ahole and nhole denote the radius and theand the coefficient A is given by
number of voids in the elastomer disk, respec-
tively.

A Å 3na1
2[(1 0 n)xaI0(xa ) 0 (1 0 2v)I1(xa ) ]

(5) Substitution of eq. (11) into eq. (9) yields

where M* å M
G
Å 4

3 H2m 0 4 / 9a 0 9a2

a(2m 0 3a ) J (13)

x Å 2
h

√
3 0 6n
2 0 2n

(6)
Also, the substitution of eq. (11) into eq. (10)
yieldsFor this system, the boundary conditions, due to

incompressibility, are
u Å 3a*

√
a (14)

u (r , z Å h /2) Å 0, wz (z Å h /2) Å 0 (7)
where a* Å a /h is the ‘‘aspect ratio’’ of the speci-

and at the upper boundary, the axial displace- men.
ment is: A typical value of the aspect ratio for our exper-

imental studies1–5 was a* É 8. It can be proved
w (z Å h /2) Å 1h /2 (8) that for this value of the aspect ratio, the parame-

ter m is close to u, 2,3 that is,
where 1 denotes the strain in the pancake sample.

Using the average values for the stress field m É u Å 3a*
√
a (15)

within the sample, one can prove3,4 that the effec-
tive modulus for this testing system is given by Substitution of eq. (15) into eq. (13) yields:

M* Å 4
3 H6a*

√
a 0 4 / 9a 0 9a2

3a
√
a(2a* 0

√
a)

J (16)
MÅ 2G

S(10 n )0 2v2

(10 v)m0 (10 2v) D
(10 2v)

(9)

Equation (16) yields the relationship between thewhere
normalized modulus of elasticity with the volume
fraction of voids a.

m Å u
I0 (u)
I1 (u )

, u Å kS a
hD , k Å

√
3 0 6n
2 0 2n

(10) The stress/strain law in a normalized form can
be easily written as

4378/ 8EA4$$4378 06-24-97 13:39:45 polaa W: Poly Applied



1824 KAKAVAS

T* Å M*(a )1 (a) (17)
Mg * Å 0 4a•

3a2 H1 0 4(2 0 3a )
2m 0 3aB )

where M* is given by eq. (16), the strain 1 within
the pancake sample is a function of void volume / (m2 0 u2)(2 0 3a )2

(2m 0 3a)2 J (20)
fraction a, and T* denotes the normalized stress,
that is, T* Å T /G . In the next section, a relation
between the strain, 1, and the porosity, a, of the

Substituting eq. (20) into eq. (19) yieldsmaterial is obtained using the concepts of fracture
mechanics.

1 Å
√

3Gn
2G

a(n / 1)/2√
F(a )

(21)

POWER BALANCE EQUATIONS where

In this section, the power balance equations will F(a )Å 10 4(20 3a )
2m0 3a )

/ (m20 u2)(20 3a )2

(2m0 3a)2 (22)
be presented in order to evaluate the dependence
of strain on the porosity of the material. Let P is

Equation (21) relates the strain field 1 in the test-the power input in the system due to external
ing sample with the porosity a of the material.forces, U1 is the potential energy of the system,
For m É u, the last terms in eq. (22) drop out andU2 is the kinetic energy, and U3 is the surface
one receives the following result:energy; thus, the power balance equation is given

by12,13

F(a ) Å 1 0 4(2 0 3a )
(2m 0 3a )

(23)

P Å Ug 1 / Ug 2 / Ug 3 (18a)
Since F(a ) must be positive and assuming the
m is given by eq. (15), one obtains the followingwhere
restriction for a:

P Å 2T (pa2 )v
h
Å T1

h
V (v Å 1h /2) 3

√
a ¢

√
8 / (a*)2 0 a* (24)

U1 Å 1
2T1V Å 1

2M12V (V Å pa2h )
For our experiments, a*Å 8, that is,

√
a¢ 0.16176

or a¢ 0.02617Å a0 . Hence, in order for the theoryUg 2 Å 0 (kinetic energy is neglected)
to work, the volume fraction of voids must be

U3 Å GanV (Gan is empirical) (18b) greater than a0 . When a Å a0 , then F Å 0, and
from eq. (16), M /G Å 26.48. Also, when a Å 1,

The dot above the righthand side of eq. (18) de- then F Å 1.09 and M /G Å 1.304. A plot of F(a)
notes the derivative with respect to time, and G as a function of the volume fraction of voids, a,
is the surface energy per unit volume around the is depicted in Figure 3. The normalized effective
voids. modulus of elasticity versus the void volume frac-

The substitution of eq. (18) into eq. (17) yields tion is shown in Figure 4. In Figure 5, one can
see the effluence of strain field on the void volume
fraction for various values of fitting parameters,P 0 Ug 1

V
Å 0 12

2
M Å Gnan01a

h
(19) 3Gn /2G and n .

The substitution of eqs. (16) and (21) into eq.
(17) yields the stress/strain law, including the

where a
h

denotes the variation of void production dependence on the void volume fraction, that is,
in the sample with respect to testing time. The
lefthand side of eq. (19) is know as the J integral. T

G
Å 4

3 H2m 0 4 / 9a 0 9a2

a(2m 0 3a) JThe parameters G and n must be determined by
fitting with the experimental data. Hence, one is
leading to a model with two fitting parameters.

1 S3G
2GD

1/2 a (n/1) /2√
F

(25)Disregarding the algebraic details and using
eq. (13), one can prove that
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NUMERICAL RESULTS

The experimental stress/strain curve of Figure 6
was fitted with eq. (25) in order to evaluate the
fitting parameters 3Gn /2G and n . One can take
a low value of the porosity, a, say a0 Å 0.03 Å 3%,
and fit the experimental stress/strain curve using
eq. (25). The fitting shows that the parameters
3Gn /2G and n are equal to 0.1 and 1.5, respec-
tively. Hence, the material parameters 3Gn /2G
and n can be easily determined by simple tension
data of the testing specimen.

By numerical differentiation of the experimen-
tal stress/strain curve (Fig. 6), one can easily find
the experimental normalized modulus of the test-

Figure 3 Plot of the function F(a) versus the volume ing material as a function of the strain within the
fraction of voids, a, based on eq. (23). solid under tension. The outcome of this procedure

is shown in Figure 7. Using the proposed eq. (16)
for the normalized modulus and the correspond-

where m and F are defined by eqs. (15) and (23), ing experimental curve for the modulus, one can
respectively. Equation (25) is a new constitutive determined the volume fraction of growing voids
law for the pancake sample interconnecting the inside the testing sample. The values of a for vari-
stress with the strain whenever the medium is no ous values of strain are shown in Figure 7. One
longer a pure elastic but is a porous randomly can see that the void volume fraction increases as
faulted medium.14

the modulus decreases and the strain increases.
Since the values of fitting parameters are known,
the strain field as a function of a is known using

EXPERIMENTAL either eq. (21) or Figure 5. Therefore, one can
easily estimate the growing of voids within a test-

In order to justify the proposed theory, a few ex- ing pancake sample using the experimental
periments were run on a pancake sample with a stress/strain curve in conjunction with the pro-
radius of 3 inches and a thickness of 0.381 inches posed theory.
(that is, an aspect ratio of about 8). The material
used in the experimental studies is described in
Refs. 1–4. The geometry of the sample is shown
in Figure 2, and the experimental stress versus
strain curve is shown in Figure 6. The experi-
ments were run on an MTS (machine for testing
materials) with a strain rate of 0.026/min at room
temperature.11 An O-ring type of material was
tested under uniaxial tension in an INSTRON
testing machine (model 1026), and the shear
modulus of the material was evaluated by using
the Mooney-Rivlin plot. A value of G Å 68 psi (or,
Young’s modulus Å 204 psi) was estimated for
the testing material. Notice that the elastomer
is considered to be an incompressible rubber-like
solid. It was previously shown1–4 that the low
modulus of the testing disks was due to the poros-
ity of the material. It has been shown1–4 that the
porosity and/or flaws within the materials were Figure 4 Plot of the normalized effective modulus
developed during the curing process of the mate- M*(a ) versus the volume fraction of voids, a, based on

eq. (16).rial.
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Figure 5 Plot of strain 1 versus the volume fraction of voids, a, for various values of
n and 3Gn /2G .

CONCLUSION material, the volume fraction of voids increases
and the modulus of elasticity decreases. Experi-
mentally, this phenomenon was observed by my-It was found that the strain field and the modulus

of a pancake sample depend on the porosity of self and coworkers in previous studies1,2 using the
acoustic emission technique. The proposed mathe-the material. As the strain increases inside the

Figure 6 Experimental stress/strain curve of an unfilled nitrite rubber and fitting
with eq. (25) in order to extract the values of n and 3Gn /2G .
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